The ecdysone regulatory pathway controls wing morphogenesis and integrin expression during Drosophila metamorphosis.
نویسندگان
چکیده
Drosophila imaginal discs are specified and patterned during embryonic and larval development, resulting in each cell acquiring a specific fate in the adult fly. Morphogenesis and differentiation of imaginal tissues, however, does not occur until metamorphosis, when pulses of the steroid hormone ecdysone direct these complex morphogenetic responses. In this paper, we focus on the role of ecdysone in regulating adult wing development during metamorphosis. We show that mutations in the EcR ecdysone receptor gene and crooked legs (crol), an ecdysone-inducible gene that encodes a family of zinc finger proteins, cause similar defects in wing morphogenesis and cell adhesion, indicating a role for ecdysone in these morphogenetic responses. We also show that crol and EcR mutations interact with mutations in genes encoding integrin subunits-a family of alphabeta heterodimeric cell surface receptors that mediate cell adhesion in many organisms. alpha-Integrin transcription is regulated by ecdysone in cultured larval organs and some changes in the temporal patterns of integrin expression correlate with the ecdysone titer profile during metamorphosis. Transcription of alpha- and beta-integrin subunits is also altered in crol and EcR mutants, indicating that integrin expression is dependent upon crol and EcR function. Finally, we describe a new hypomorphic mutation in EcR which indicates that different EcR isoforms can direct the development of adult appendages. This study provides evidence that ecdysone controls wing morphogenesis and cell adhesion by regulating integrin expression during metamorphosis. We also propose that ecdysone modulation of integrin expression might be widely used to control multiple aspects of adult development.
منابع مشابه
Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells
During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid...
متن کاملRho-LIM Kinase Signaling Regulates Ecdysone-Induced Gene Expression and Morphogenesis during Drosophila Metamorphosis
The steroid hormone 20-hydroxyecdysone (ecdysone) is the key regulator of postembryonic developmental transitions in insects and controls metamorphosis by triggering the morphogenesis of adult tissues from larvae. The Rho GTPase, which mediates cell shape change and migration, is also an essential regulator of tissue morphogenesis during development. Rho activity can modulate gene expression, i...
متن کاملThe expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster.
In Caenorhabditis elegans, the heterochronic pathway controls the timing of developmental events during the larval stages. A component of this pathway, the let-7 small regulatory RNA, is expressed at the late stages of development and promotes the transition from larval to adult (L/A) stages. The stage-specificity of let-7 expression, which is crucial for the proper timing of the worm L/A trans...
متن کاملcrooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis.
Drosophila imaginal discs undergo extensive pattern formation during larval development, resulting in each cell acquiring a specific adult fate. The final manifestation of this pattern into adult structures is dependent on pulses of the steroid hormone ecdysone during metamorphosis, which trigger disc eversion, elongation and differentiation. We have defined genetic criteria that allow us to sc...
متن کاملThe ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs.
In holometabolous insects, a species-specific size, known as critical weight, needs to be reached for metamorphosis to be initiated in the absence of further nutritional input. Previously, we found that reaching critical weight depends on the insulin-dependent growth of the prothoracic glands (PGs) in Drosophila larvae. Because the PGs produce the molting hormone ecdysone, we hypothesized that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 220 2 شماره
صفحات -
تاریخ انتشار 2000